23,032 research outputs found

    Search procedures revisited

    Get PDF
    Search Procedures reflects on a series of studies carried out over a four year period in the late 1970s. It was published at an interesting time for Information Retrieval. Written before Information Retrieval became synonymous with online information seeking it focuses on Information Retrieval within Public Libraries, then the major location for everyday information seeking. While many of his contemporaries focused on information seeking in academic or special library settings, Peter chose instead to focus a setting that was visited by a more diverse set of people with a broader range of information needs

    Polarization dependent photoionization cross-sections and radiative lifetimes of atomic states in Ba

    Full text link
    The photoionization cross-sections of two even-parity excited states, 5d6d3D15d6d ^3D_1 and 6s7d3D26s7d ^3D_{2}, of atomic Ba at the ionization-laser wavelength of 556.6 nm were measured. We found that the total cross-section depends on the relative polarization of the atoms and the ionization-laser light. With density-matrix algebra, we show that, in general, there are at most three parameters in the photoionization cross-section. Some of these parameters are determined in this work. We also present the measurement of the radiative lifetime of five even-parity excited states of barium.Comment: 11 pages, 7 figure

    Induced superfluidity of imbalanced Fermi gases near unitarity

    Get PDF
    The induced intraspecies interactions among the majority species, mediated by the minority species, is computed for a population-imbalanced two-component Fermi gas. Although the Feshbach-resonance mediated interspecies interaction is dominant for equal populations, leading to singlet s-wave pairing, we find that in the strongly imbalanced regime the induced intraspecies interaction leads to p-wave pairing and superfluidity of the majority species. Thus, we predict that the observed spin-polaron Fermi liquid state in this regime is unstable to p-wave superfluidity, in accordance with the results of Kohn and Luttinger, below a temperature that, near unitarity, we find to be within current experimental capabilities. Possible experimental signatures of the p-wave state using radio-frequency spectroscopy as well as density-density correlations after free expansion are presented.Comment: 15 pages, 13 figures, submitted to Phys. Rev.

    Quenching of Spin Hall Effect in Ballistic nano-junctions

    Full text link
    We show that a nanometric four-probe ballistic junction can be used to check the presence of a transverse spin Hall current in a system with a Spin Orbit coupling not of the Rashba type, but rather due to the in-plane electric field. Indeed, the spin Hall effect is due to the presence of an effective small transverse magnetic field corresponding to the Spin Orbit coupling generated by the confining potential. The strength of the field and the junction shape characterize the quenching Hall regime, usually studied by applying semi-classical approaches. We discuss how a quantum mechanical relativistic effect, such as the Spin Orbit one, can be observed in a low energy system and explained by using classical mechanics techniques.Comment: 5 pages, 4 figures, PACS: 72.25.-b, 72.20.My, 73.50.Jt, to appear in Phys. Rev.

    Wide energy-window view on the density of states and hole mobility of poly(p-phenylene vinylene)

    Get PDF
    Using an electrochemically gated transistor, we achieved controlled and reversible doping of poly(p-phenylene vinylene) in a large concentration range. Our data open a wide energy-window view on the density of states (DOS) and show, for the first time, that the core of the DOS function is Gaussian, while the low-energy tail has a more complex structure. The hole mobility increases by more than four orders of magnitude when the electrochemical potential is scanned through the DOS.Comment: 4 pages, 4 figure

    Integer Spin Hall Effect in Ballistic Quantum Wires

    Full text link
    We investigate the ballistic electron transport in a two dimensional Quantum Wire under the action of an electric field (EyE_y). We demonstrate how the presence of a Spin Orbit coupling, due to the uniform electric confinement field gives a non-commutative effect as in the presence of a transverse magnetic field. We discuss how the non commutation implies an edge localization of the currents depending on the electron spins also giving a semi-classical spin dependent Hall current. We also discuss how it is possible obtain a quantized Spin Hall conductance in the ballistic transport regime by developing the Landauer formalism and show the coupling between the spin magnetic momentum and the orbital one due to the presence of a circulating current.Comment: 7 pages, 5 figures, accepted for publication in Phys. Rev. B, PACS: 72.25.-b, 72.10.-d, 72.15.Rn, 73.23.-b, 71.10.P

    Healthiness from Duality

    Get PDF
    Healthiness is a good old question in program logics that dates back to Dijkstra. It asks for an intrinsic characterization of those predicate transformers which arise as the (backward) interpretation of a certain class of programs. There are several results known for healthiness conditions: for deterministic programs, nondeterministic ones, probabilistic ones, etc. Building upon our previous works on so-called state-and-effect triangles, we contribute a unified categorical framework for investigating healthiness conditions. We find the framework to be centered around a dual adjunction induced by a dualizing object, together with our notion of relative Eilenberg-Moore algebra playing fundamental roles too. The latter notion seems interesting in its own right in the context of monads, Lawvere theories and enriched categories.Comment: 13 pages, Extended version with appendices of a paper accepted to LICS 201

    Tunable far infrared studies of molecular parameters in support of stratospheric measurements

    Get PDF
    Lab studies were made in support of far infrared spectroscopy of the stratosphere using the Tunable Far InfraRed (TuFIR) method of ultrahigh resolution spectroscopy and, more recently, spectroscopic and retrieval calculations performed in support of satellite-based atmospheric measurement programs: the Global Ozone Monitoring Experiment (GOME), and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY)
    • …
    corecore